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Abstract. In earlier work, we characterized the class of matroids
with no M(C4) as an induced minor and the class of matroids with
no member of {M(C4),M(K4)} as an induced minor. In this pa-
per, for every two matroids in {M(C4),M(K4\e),M(K4), F7}, we
determine the class of matroids that have neither of the chosen
pair as an induced minor. Additionally, we prove structural lem-
mas toward characterizing the class of matroids that do not contain
M(K4) as an induced minor.

1. Introduction

The notation and terminology in this paper will follow [12]. Unless
stated otherwise, all graphs and matroids considered here are simple.
Thus, every contraction of a set from a matroid is immediately followed
by the simplification of the resulting matroid. An induced restriction of
a matroidM is a matroidN that can be obtained fromM by restricting
to a flat. An induced minor of M is a matroid N that can be obtained
from M by a sequence of restrictions to flats and contractions, where
each such contraction is followed by a simplification. Equivalently, N
can be obtained from M by at most one restriction to a flat and at most
one contraction followed by a simplification, where these operations can
be performed in either order. As noted by Thomas Zaslavsky (private
communication), this means that M has N as an induced minor if and
only if N is the matroid corresponding to an interval in the lattice of
flats of M

Given a set M of binary matroids, we write EXIM(M) for the class
of binary matroids with no member of M as an induced minor. In
previous work [3, 4], we characterized EXIM(M(C4)) and proved the
following characterization of EXIM(M(C4),M(K4)).

Theorem 1.1. The class EXIM(M(C4),M(K4)) consists of the binary
matroids that can be obtained from projective geometries over GF (2)
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by repeated generalized parallel connections across projective geometries
over GF (2).

In Section 2, we consider the other five pairs of rank-3 connected
binary matroids and describe the binary matroids in which neither
member of the pair occurs as an induced minor. The characterizations
of each of these classes include the following.

Theorem 1.2. The connected members of EXIM(M(K4\e),M(K4))
consist of all projective geometries, all affine geometries of rank at least
three, and all circuits with at least three elements.

Theorem 1.3. The connected members of EXIM(M(K4\e), F7) consist
of F ∗

7 and all of the matroids M(Cn) and M(Kn) with n ≥ 3.

Theorem 1.4. The connected members of EXIM(M(C4),M(K4\e))
consist of all projective geometries, all projective geometries with a sin-
gle point deleted, and all cycle matroids of complete graphs.

Let N be a simple GF (q)-representable matroid. Oxley and Whit-
tle [13] defined the q-coning, A(N), of N as the GF (q)-representable
matroid that is obtained by adding a coloop p to N and then adding
every point on each line between p and a point of N . We call p the tip
(or apex ) of the cone. This construction was originally introduced by
Whittle [19], who called the operation a q-lift. Whenever the field is
clear, we will write ‘coning’ in place of ‘q-coning’. Similarly, a tipless
coning of N is the matroid A(N)\p. We shall sometimes call A(N) a
tipped coning of N . For a class M of GF (q)-representable matroids,

we write M̂ for the class of matroids obtained from M by repeated
q-conings. In Section 3, we prove the following result.

Theorem 1.5. If M is a class of GF (q)-representable matroids closed

under taking induced minors, then the class M̂ is closed under taking
induced minors.

In Section 4, we show that the class of binary matroids that do not
contain M(K4) as an induced minor is closed under taking generalized
parallel connections across projective geometries, coning with a tip,
and, for a member of the class having no triangles, coning without a
tip. Our goal is to eventually prove the following conjecture. A matroid
is triangle-free if it has no three-element circuits.

Conjecture 1.6. The class of 3-connected binary matroids that do not
contain M(K4) as an induced minor is exactly the class of matroids
that can be obtained by starting with binary projective geometries and
circuits and applying sequences of the following operations:
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(i) generalized parallel connections across projective geometries;
(ii) tipped coning; and
(iii) tipless coning of triangle-free matroids.

In Section 4, we also prove various structural results for matroids
that do not contain M(K4) as an induced minor. The most important
of these, which may be of independent interest, is the following.

Theorem 1.7. Let M be a 3-connected matroid having an element e
such that neither M nor M\e has M(K4) as an induced minor. Then
every element of E(M)− {e} is in a triangle with e.

2. Small sets of excluded induced minors

There are exactly four connected rank-3 binary matroids, namely
M(C4),M(K4\e),M(K4), and F7. In this section, we characterize the
classes of matroids with pairs of such matroids as excluded induced
minors. Unless otherwise stated, the matroids considered in this section
will be binary. Recall that, given a set M, of binary matroids, we
write EXIM(M) for the class of binary matroids with no member of
M as an induced minor. Following Cordovil, Klein, and Forge [1], a
matroid M is chordal if, for each circuit C with at least four elements,
clM(C)−C ̸= ∅. Similarly, an element g of E(M) is a chord of a circuit
C if g ∈ clM(C) − C. In [4], we proved the following characterization
of chordal binary matroids.

Lemma 2.1. A binary matroid is chordal if and only if it has no M(C4)
as an induced minor.

We use this lemma in the proof of the next result.

Lemma 2.2. The class EXIM(M(C4), F7) is exactly the class of chordal
regular matroids.

Proof. By Lemma 2.1, EXIM(M(C4), F7) contains all chordal regular
matroids. Let M be in EXIM(M(C4), F7). Then M has does not have
M(C4) as an induced minor and, by Lemma 2.1, M is chordal. Suppose
M is not regular. Since M is binary, it does not have U2,4 as a minor.
As M does not have F7 as an induced minor, it does not have F7 as a
minor. Therefore, since M is not regular, it must have F ∗

7 as a minor.
As F ∗

7 has M(C4) as an induced minor, M does not have F ∗
7 as an

induced minor. By the Scum Theorem, M has as a contraction a rank-
4 proper extension of F ∗

7 . But every rank-4 proper extension of F ∗
7 has

F7 as an induced minor, a contradiction. □
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A graph H is a parallel extension of a graph G if G = H\f for an
edge f such that f is in a non-trivial parallel class of H. Likewise, a
graph H is a series extension of a graph G if G = H/f for an edge
f of H such that f is in a non-trivial series class of H. A graph G is
a series-parallel network if it can be obtained from a loop or K2 by a
sequence of operations each of which is a series or parallel extension. A
matroid M is called a series-parallel network if M is the cycle matroid
of a graph G that is a series-parallel network. Observe that this means
that every series-parallel network is a connected matroid.

Lemma 2.3. The connected members of EXIM(M(K4), F7) consist
precisely of all simple series-parallel networks.

Proof. Suppose M is a series-parallel network. Then, by a theorem of
Dirac [2], M does not have M(K4) as a minor and therefore M has
neither M(K4) nor F7 as an induced minor.

Now suppose M is in EXIM(M(K4), F7). Since M is binary, M
has no U2,4-minor. Moreover, M has no M(K4)-minor. Thus, by, for
example, [12, Corollary 12.2.14], M is isomorphic to M(G) for some
series-parallel network G. □

Theorem 1.1 and Lemmas 2.2 and 2.3 determine EXIM(N1, N2) for
three pairs of matroids from {M(C4),M(K4), F7}. Each of the remain-
ing pairs {N1, N2} contains M(K4\e). The next result will be useful
in dealing with these possibilities.

Lemma 2.4. Let M be a connected binary matroid that is not 3-
connected and suppose that |E(M)| ≥ 5. Then

(i) M is a circuit and has M(C4) as an induced minor; or
(ii) M decomposes as a parallel connection of simple matroids and

has M(K4\e) as an induced minor; or
(iii) M decomposes as a 2-sum of simple matroids and has both

M(C4) and M(Ke\e) as induced minors.

Proof. If M is a circuit, then M has M(C4) as an induced minor. As M
is connected but not 3-connected, it has a 2-separation (X, Y ). Suppose
that cl(X) ∩ cl(Y ) = ∅. Then, by [4, Lemma 2.3], M has M(C4) as an
induced minor. Moreover, M is the 2-sum of simple matroids M1 and
M2 that have ground sets X ∪ {p} and Y ∪ {p}, respectively.

Now assume that M is not a circuit. Then, at least one of M1 or
M2, say M2, is not a circuit. Let C2 be a minimum-sized circuit of
M2 containing p, and let D2 be a circuit of M2 that meets C2 such
that D2−C2 is minimal and non-empty. The choice of D2 implies that
{C2−D2, C2∩D2, D2−C2} is a partition of C2∪D2 such that the union
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of every two of these sets is a circuit of M2. Moreover, each of the sets
in {C2−D2, C2∩D2, D2−C2} is a series class ofM2|(C2∪D2) and, since
M2 is simple, at most one of these sets contains a single element. In
M2|(C2 ∪D2), we can contract elements to obtain an M(K4\e)-minor
having p as an element. Thus, M2 has an induced minor N2 using the
element p such that N2 is one of M(K4\e), M(K4), or F7. Let C1 be a
minimum-sized circuit of M1 containing p and let a1 and b1 be elements
of C1 − p. Then deleting the elements of M1 not in C1 and contracting
the elements of C1−{a1, b1, p}, we get, as an induced minor N1 of M1,
a triangle with ground set {a1, b1, p}.
Suppose N2 is M(K4\e). Then, by taking the 2-sum of N1 and N2,

we get an induced minor of M that we can check has M(K4\e) as an
induced minor. Now suppose N2 isM(K4) or F7. Then we can contract
an element of N2 other than p to get a rank-2 matroid N ′

2 having p in a
2-circuit. The simplification of the 2-sum of N1 and N ′

2 with basepoint
p is M(K4\e), so this matroid is an induced minor of M .

We may now assume that cl(X) ∩ cl(Y ) = {z} for some element z.
For each i in {1, 2}, let Ci be a circuit inMi containing z, and let ai and
bi be distinct elements of Ci−z. Then M/((C1∪C2)−{a1, b1, a2, b2, z})
has {a1, b1, z} and {a2, b2, z} as triangles and has {a1, b1, a2, b2, z} as a
flat. Therefore, M has M(K4\e) as an induced minor. □

We will often write Pr for the projective geometry PG(r−1, q) when
context makes the field clear.

Proof of Theorem 1.2. Let M be the set of all connected matroids in
EXIM(M(K4\e),M(K4)). Clearly, all projective geometries, all affine
geometries, and all circuits with at least three elements are in M.

Let N be in M. If r(N) = 3, then the N is either M(C4) or F7

and the result holds. Let M be a smallest-rank member of M such
that M is not a projective geometry, an affine geometry, or a circuit.
Let r(M) = r. Then r ≥ 4. By Lemma 2.4, we may assume M is
3-connected. By the choice of M , the matroid M/f is a projective
geometry, an affine geometry, or a circuit for each f in E(M). If M/f
is a projective geometry for all f in E(M), then, by [3, Lemma 3.2], M
is isomorphic to Pr\Pi for some i with 0 ≤ i ≤ r − 1. If 1 ≤ i ≤ r − 2,
then M has M(K4) as an induced minor. Therefore, i = 0 and M is a
projective geometry, or i = r− 1 and M is an affine geometry. In each
case, we obtain a contradiction. Therefore, M has an element f such
that M/f is M(Cn) for some n ≥ 4, or M/f is an affine geometry. In
each case, there is at most one triangle containing f otherwise M has
M(K4\e) as an induced minor. Suppose that M/f ∼= M(Cn) for some
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n ≥ 4. Then |E(M)| ≤ n + 2 and r(M) = n. Therefore r∗(M) ≤ 2, a
contradiction since M is 3-connected.
We now know that M/f is an affine geometry for some f in E(M).

In this case, as f is in at most one triangle,

2r−2 + 1 ≤ |E(M)| ≤ 2r−2 + 2. (2.1)

Suppose M/g is a projective geometry for some g in E(M). Then
|E(M/g)| = 2r−1−1, which contradicts (2.1) since r ≥ 4. Therefore, for
all g in E(M), we must have that M/g is an affine geometry. Assume
that M is not an affine matroid and let C be a smallest odd circuit in
M . As M is not a circuit, there is an element g in E(M) − C. Since
M/g is an affine geometry, g ∈ clM(C), so M has a circuit D such that
g ∈ D ⊆ C ∪ {g}. Then D or D △ C is an odd circuit that is smaller
than C, a contradiction. We conclude that M is an affine matroid.
Thus, if g ∈ E(M), then M/g has an odd circuit, a contradiction. □

Lemma 2.5. The 2-connected simple graphs that do not contain K4\e
as an induced minor are cycles and cliques.

Proof. Suppose G is a 2-connected graph with no K4\e as an induced
minor. By Lemma 2.4, either G is a cycle, or G is 3-connected. Assume
that G is not a cycle and not a clique and let x and y be two non-
adjacent vertices of G for which the distance d between them is a
minimum. Suppose d ≥ 3. Take a minimum-length (x, y)-path and
let x′ and y′ be two adjacent internal vertices of this path where xx′

is an edge. Then the distance from x to y′ must be 1 by the choice of
x and y. Hence there is a shorter (x, y)-path, a contradiction. Thus
d = 2. Let w be the internal vertex on a length-2 (x, y)-path. Since
G is 3-connected, G − w is 2-connected. Let C be a shortest cycle of
G containing x and y and avoiding w. Take P1 and P2 to be the two
(x, y)-paths such that E(P1) ∪ E(P2) = E(C) and |E(P1)| ≤ |E(P2)|.
If there is an edge from an internal vertex z of P1 or of P2 to w, then
we may contract P1 or P2 down to two edges, namely xz and zy, and
obtain K4\e as an induced minor of G, a contradiction. Therefore,
there are no edges from w to an internal vertex of P1 or of P2. Then,
by contracting P1 to a single edge and P2 to two edges, we obtain K4\e
as an induced minor of G, a contradiction. □

The next two results, which are due to Hall [5] (see also [12, Propo-
sition 12.2.11]) and Oxley [10, Lemma 3], will be used in the proof of
Lemma 2.8.

Theorem 2.6. If G is a 3-connected graph, then G has no K3,3-minor
if and only if either G is planar or its associated simple graph is K5.
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Lemma 2.7. There is no simple rank-4 regular matroid having M∗(K3,3)
as a proper restriction.

Lemma 2.8. Suppose M is a cographic matroid such that M is not
graphic. Then M has M(K4\e) as an induced minor.

Proof. Suppose M does not have M(K4\e) as an induced minor. By
Lemma 2.4, we may assume that M is 3-connected. Since M is co-
graphic but not graphic, M is the bond matroid of some non-planar
graph G. Then G has K3,3 or K5 as a minor. Suppose G has K3,3 as
a minor and hence M has M∗(K3,3) as a minor. If M does not have
M∗(K3,3) as an induced minor, then, by Lemma 2.7, M is not regular,
a contradiction. Therefore, M has M∗(K3,3) as an induced minor, so
M has M(K4\e) as an induced minor, a contradiction. It now follows,
by Theorem 2.6, that the simple graph associated with G is K5. Since
M∗(G) ∼= M , in forming an induced minor of M , any deletion of ele-
ments of G is allowed. Therefore, we may assume G ∼= K5. However,
by contracting a triangle of K5 and deleting one edge from each of the
resulting parallel classes, we obtain the planar dual of K4\e. Hence,
by deleting a triad of M and contracting one element from each of the
resulting non-trivial series classes, we obtain M(K4\e) as an induced
minor of M , a contradiction. □

We will use the following result of Seymour [15] (see also [12, Corol-
lary 12.2.6]).

Lemma 2.9. Every binary matroid with no F7-minor can be obtained
from regular matroids and copies of F ∗

7 by a sequence of direct sums
and 2-sums.

The next result is known as Seymour’s Decomposition Theorem [14]
(see also [12, Theorem 13.1.1]).

Theorem 2.10. Every regular matroid M can be constructed by using
direct sums, 2-sums, and 3-sums starting with matroids each of which
is either graphic, cographic, or isomorphic to R10 and each of which is
a minor of M .

We now prove the second main theorem of this section.

Proof of Theorem 1.3. Certainly all circuits, all cycle matroids of com-
plete graphs, and F ∗

7 are contained in the set of connected members of
EXIM(M(K4\e), F7).

Now suppose M is a connected member of EXIM(M(K4\e), F7). As-
sume M is not a circuit, the cycle matroid of a complete graph, or F ∗

7 .
By Lemma 2.4, we may assume M is 3-connected. Since M does not
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have F7 as an induced minor, M does not have F7 as a minor and
therefore, by Lemma 2.9, M can be built from regular matroids and
copies of F ∗

7 by 2-sums. Since M is 3-connected and, by assumption,
M ̸∼= F ∗

7 , we deduce M is a regular matroid. Then, by Theorem 2.10,
M can be obtained from graphic matroids, cographic matroids, and
copies of R10 by 2-sums or 3-sums, and M has each starting matroid
as a minor. Since such a minor can be achieved by contracting and
simplifying only, M has each starting matroid as an induced minor.
If any of the matroids used to obtain M is isomorphic to R10, then
M has M∗(K3,3) as an induced minor since R10/x ∼= M∗(K3,3) for all
elements x. Therefore, M has M(K4\e) as an induced minor, a contra-
diction. If any of the matroids used to obtain M is cographic but not
graphic, then, by Lemma 2.8, M has M(K4\e) as an induced minor,
a contradiction. Thus, all of the matroids used to obtain M must be
graphic. Any 2-sum or 3-sum of graphic matroids is a graphic matroid.
By Lemma 2.5, M is the cycle matroid of either a cycle or a clique, a
contradiction. □

For a matroid M and a positive integer k, denote a vertical k-
separation by (X,G, Y ) where (X,G, Y ) is a partition of E(M) with
G = cl(X) ∩ cl(Y ) and both (X ∪ G, Y ) and (X, Y ∪ G) are vertical
k-separations of M . Recall that a matroid is round if, for all positive
integers k, it has no vertical k-separations.

Lemma 2.11. Each member of EXIM(M(C4),M(K4\e)) is either dis-
connected or round.

Proof. Suppose M is a connected member of EXIM(M(C4),M(K4\e)),
and that M has a vertical k-separation (X,G, Y ) for some k ≥ 2. First
suppose G = ∅. Then, by [4, Lemma 2.3], M has M(C4) as an induced
minor, a contradiction.

If r(G) < k − 1, then M/G has a vertical k′-separation (X ′, G′, Y ′)
with G′ = ∅ and, by [4, Lemma 2.3], M/G has M(C4) as an induced
minor, a contradiction. We deduce that r(G) = k − 1. Let g be an
element of G. Then M ′ = M/(G − {g}) is a parallel connection of
(M |cl(X))/(G − g), and (M |cl(Y ))/(G − g). By Lemma 2.4, M has
M(K4\e) as an induced minor, a contradiction. □

A flat F in a matroid M is a connected flat if M |F is connected.

Corollary 2.12. If F is a connected flat in a matroid M in the class
EXIM(M(C4),M(K4\e)), then M |F is round.

McNulty and Wu [6] proved the following result.
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Lemma 2.13. Let M be a 3-connected binary matroid with at least
four elements. Then, whenever f and g are distinct elements of M ,
there is a connected hyperplane of M containing f and avoiding g.

We now prove the third main result of this section.

Proof of Theorem 1.4. Clearly each of the matroids listed is a con-
nected member of EXIM(M(C4),M(K4\e)). We now show that these
are the only connected matroids in EXIM(M(C4),M(K4\e)). LetM be
a minimum-rank connected member of EXIM(M(C4),M(K4\e)) that
is not one of the listed matroids. Then r(M) ≥ 4. Assume r(M) = 4.
By Lemma 2.4, we may assume that M is 3-connected. If M is graphic,
thenM ∼= M(W4) orM ∼= M(K5\e), soM hasM(K4\e) as an induced
minor, a contradiction. Thus, M is not graphic, so, by a theorem of
Tutte [18], either M is not regular, or M is regular and has M∗(K3,3)
as a minor. In the second case, by Lemma 2.7, M ∼= M∗(K3,3), so
M has M(K4\e) as an induced minor, a contradiction. We deduce
that M is not regular. Then, by another theorem of Tutte [17], M
has F7 or F ∗

7 as a minor. By a result of Seymour [16] (see also [12,
Lemma 12.2.4]), M must have F ∗

7 as a spanning restriction. As F ∗
7 has

M(C4) as an induced restriction, |E(M)| ≥ 8. Thus, by [12, Lemma
12.2.4] again, M has AG(3, 2) or S8 as a restriction. Since the last
two matroids have M(C4) and M(K4\e) as induced restrictions, we
deduce that |E(M)| ≥ 9. Thus, the complement M c of M in P4 is
a proper restriction of F7 or of M(K4) ⊕ U1,1. Since M is not P4 or
a single-element deletion of P4, we see that |E(M)| ≤ 13. Now M c

has U2,2 or U2,3 as a rank-2 flat F . Each of the three projective planes
that contain F must contain a point of M c that is not in F , otherwise
M has M(K4\e) or M(C4) as an induced restriction. But each of the
possibilities for M c has rank 4 so none is a restriction of F7. Thus, M

c

is a restriction of M(K4)⊕U1,1 having at least five points including the
point corresponding to U1,1. Hence, M

c is M(K4\e)⊕U1,1, U2,3 ⊕U2,2,
orM(C4)⊕U1,1. In each case, M hasM(C4) orM(K4\e) as an induced
restriction. We conclude that r(M) ̸= 4.

We may now assume that r(M) ≥ 5. By Lemma 2.13, M has a
connected hyperplane, H. By the choice of M , it follows that M |H
is a projective geometry, a projective geometry with a point deleted,
or the cycle matroid of a complete graph. Suppose first that M |H is
a projective geometry with one point deleted. Let p be the projective
point missing from H and let x be in E(M) − H. Suppose the point
y on the line from x to p is in E(M). Then, for each element h in
H, by the choice of M , the plane spanned by {x, h, y} is isomorphic
to M(K4). In particular, for each h in H, the third point on the line
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spanned by {x, h} is in E(M). Hence, M |clM(H ∪ {x}), which equals
M , is a projective geometry with one point deleted, a contradiction.
Therefore, y ̸∈ E(M). Let z be in E(M) − (H ∪ {x}). Then there
is a point g of H such that {x, z, g} is a triangle. However, g is in a
rank-4 flat F of H that spans p and M |F is isomorphic to P4 − {p}.
This implies that cl(F ∪ x) is a connected flat of M and, by the choice
of M , the matroid M |cl(F ∪ x) is a projective geometry, a projective
geometry with one point deleted, or the cycle matroid of a complete
graph. Since M |cl(F ) has F7 as a minor, M |cl(F ∪ x) cannot be a the
cycle matroid of a complete graph. Moreover, since p ̸∈ E(M), the
matroid M |cl(F ∪ x) is a projective geometry with exactly one point
deleted, a contradiction as the point on the line between x and p was
assumed to not be in E(M). We deduce that no connected hyperplane
of M is a projective geometry with a point deleted.

Next suppose that M |H is a projective geometry. Let x and y be
distinct elements of E(M)−H. Then there is an element h in H such
that {x, y, h} is a triangle of M . Since, by Lemma 2.11, M is round,
there must be an element z in E(M) − (H ∪ {x, y}). This implies
there are elements fz and gz in H such that {x, z, fz} and {y, z, gz} are
triangles of M . Then M |cl({x, y, z, f, gz, hz}) is either M(K4) or F7.
Let X be a largest subset of E(M)−H containing {x, y, z} such that
M |cl(X) is a projective geometry with at most one point deleted. If
X = E(M)−H, then, since M is round, the cocircuit X is spanning.
Thus, M is a projective geometry with at most one point deleted, a
contradiction. Let w be in E(M)−(H∪cl(X)). Consider M |cl(X∪w).
For any point t ofX, there is a point ht inH−cl(X) such that {t, w, ht}
is a triangle of M . Thus, cl(X ∪ w) is a connected flat of M . As
r(cl(X ∪ w) ∩ H) ≥ 3, we see that cl(X ∪ w) has F7 as a restriction.
Hence either cl(X ∪w) = E(M), or cl(X ∪w) is a projective geometry
or a projective geometry with a point deleted. The second possibility
contradicts the choice ofX. Since cl(X∪w) = E(M), we see that cl(X)
is a connected hyperplane of M . As r(cl(X)∩H) ≥ 3, we deduce that
cl(X) ∩H has F7 as a restriction, so cl(X) is a projective geometry of
rank r(M)− 1.
We show next that M is a projective geometry by showing that each

line through w and a point h of H contains three points of M . This
is certainly true if h ∈ H − cl(X) because cl(X) is a projective hy-
perplane. Now take h in cl(X) ∩ H. Let x1 be a point of X − H.
Then the third point x2 on the projective line spanned by {x1, h} is in
E(M). Extend {x1, x2} to a basis BX of X. Take b in BX − {x1, x2}.
Then cl((BX − b) ∪ w) is a connected hyperplane of M containing h
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and w. Since this hyperplane has an F7 restriction, it must be a pro-
jective geometry. Thus, the third point on the projective line spanned
by {w, h} is in E(M). We conclude that M is indeed a projective ge-
ometry, a contradiction. We deduce that no connected hyperplane of
M is a projective geometry.

We now know that, for every connected hyperplane H of M , the
matroid M |H must be isomorphic to the cycle matroid of a complete

graph. Hence |H| =
(
r(M)
2

)
.

2.13.1. For all x in E(M), the matroid M/x is the cycle matroid of a
complete graph.

Suppose, for some x in E(M)−H, thatM/x is a projective geometry
or a projective geometry with exactly one point deleted. As M |H ∼=
M(Kn) for some n ≥ 5, we see that M |H has a flat F such that
M |F ∼= M(K5). ViewingM as a restriction of Pr(M), there are elements
a and b of clPr(M)

(F )−F such that {x, a, ax} and {x, b, bx} are triangles

of Pr(M) for some elements ax and bx in E(M) − (H ∪ {x}) because
M/x is a projective geometry possibly with a point deleted.

Since M |F ∼= M(K5), the set clPr(M)
(F ) − F is a 5-circuit so it

does not contain any triangles. Thus, there is a point y in F such
that {a, b, y} is a triangle of Pr(M). If the third point on the line
clPr(M)

({x, y}) is in E(M), then clM({x, ax, bx}) is a flat isomorphic

to M(K4\e), a contradiction. Thus, the third point on clPr(M)
({x, y})

is not in E(M). Let d be a point of clPr(M)
(F )− (F ∪ {a, b}) such that

{x, d, dx} is a triangle in Pr(M) for some dx in E(M) − H. Note that
such an element must exist since M/x is a projective geometry with at
most one point deleted and |clPr(M)

(F )− (F ∪ {a, b})| = 3.

As the complement of M(K5) in P4 is a 5-circuit, the third point t
on the line clPr(M)

({d, y}) must be in F , otherwise {a, b, d, t} forms a

4-circuit in clPr(M)
(F )−F . Thus, clM({x, dx, y}) is a connected rank-3

flat containing four or five elements, a contradiction. We conclude that
M/x is the cycle matroid of a complete graph for all x in E(M)−H.

Fix f in E(M) − H and suppose, for some g in E(M) − f , that
M/g is a projective geometry or a projective geometry with one point
deleted. In M/g, let f label the point corresponding to the parallel
class that contained f . Then M/g/f is a projective geometry. Since
r(M) ≥ 5, it follows that M/g/f has F7 as a minor, a contradiction
since M/f ∼= M(Kr(M)). Therefore, 2.13.1 holds.

By 2.13.1, every single-element contraction of M is regular. Since
M is binary of rank at least five, the Scum Theorem implies that M
has neither F7 nor F ∗

7 as a minor. Thus, by a theorem of Tutte [17],
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M is regular. Let C∗ = E(M) − H and suppose C∗ is dependent.
Since M is binary, every circuit contained in C∗ has even cardinality.
Let {x1, x2, . . . , xs} be a circuit C contained in C∗. Because each of
M |H and M/xs is the cycle matroid of a complete graph, the third
point yi on the projective line spanned by {xi, xs} is in M . Then
M |(C ∪{y1, y2, . . . , ys−1}) is isomorphic to a binary spike of rank s− 1
with a tip. As the last matroid has F7 as a minor, we have a contra-
diction. We conclude that C∗ is independent, and, by Lemma 2.11,
M is round, so C∗ is spanning. Therefore, |C∗| = r(M). Hence,

|E(M)| = r(M) +
(
r(M)
2

)
=

(
r(M)+1

2

)
. By [8] (see also [12, Propo-

sition 14.10.3]), as M is a regular matroid with
(
r(M)+1

2

)
elements,

M ∼= M(Kr(M)+1), a contradiction. □

3. Conings

In this section, we show that, for an induced-minor-closed class M of

GF (q)-representable matroids, the class M̂ of matroids that contains
M together with all matroids that can be built from members of M
by repeatedly taking q-conings is also an induced-minor-closed class.
Unless specified otherwise, all matroids considered in this section are
GF (q)-representable.

Lemma 3.1. If M is a class of GF (q)-representable matroids closed

under taking induced minors, then M̂ is closed under taking contrac-
tions.

Proof. Let M be a smallest-rank member of M̂ for which there is an

element e such that M/e ̸∈ M̂. As M is closed under taking induced

minors, M ̸∈ M. Thus, M = A(N) for some N in M̂. If e = p, the tip

of the coning, then M/e ∼= N , so M/e ∈ M̂, a contradiction. Hence
e ∈ E(M) − p. By [19, Lemma 2.3(i)], there is a hyperplane H of M
that contains e such that M |H ∼= N . Let N ′ = M |H. Then N ′ is in

M̂ and, therefore, N ′/e is in M̂. Thus, by [19, Lemma 2.3(iii)], we

have M/e ∼= A(N ′/e), so M/e ∈ M̂, a contradiction. □

Lemma 3.2. If M is a class of GF (q)-representable matroids closed

under taking induced restrictions, then M̂ is closed under taking in-
duced restrictions.

Proof. Let M be a smallest-rank member of M̂ having a flat F such

that M |F ̸∈ M̂. Then M ̸∈ M, so M = A(N) for some N in M.
Suppose F contains the tip p. Then F ∩ E(N) is a flat of N and,
as N ∈ M and r(N) < r(M), it follows that N |(F ∩ E(N)) ∈ M.
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Therefore, as M |F = A(N |(F ∩ E(N))), we see that M |F is in M̂,
a contradiction. Thus, p ̸∈ F . Hence, by [19, Lemma 2.3 (ii)], M
has a hyperplane H avoiding p such that M |H ∼= N and F ⊆ H.

Let N ′ = M |H. Then N ′ ∈ M̂. As M |F = N ′|F , we see, since

r(N ′) < r(M), that M |F ∈ M̂, a contradiction. □

Proof of Theorem 1.5. This is an immediate consequence of combining
Lemmas 3.1 and 3.2. □

Given a classM of GF (q)-representable matroids, let |M be the class
of matroids obtained by starting with matroids in M and applying a

sequence of tipless q-conings; let M̃ be the class of matroids obtained
by starting with matroids in M and applying a sequence of operations
each of which is a tipped q-coning or a tipless q-coning. As an example,
we have the following result whose straightforward proof is omitted.

Proposition 3.3. The class of GF (q)-representable matroids that can
be obtained by starting with the empty matroid and applying a se-
quence of tipless q-conings consists of the class of affine geometries
over GF (q).

If N is an affine geometry over GF (q) with r(N) ≥ 3 and e ∈ E(N),
then N/e is a projective geometry over GF (q) of rank at least two.

Hence, for a class M of GF (q)-representable matroids, the class |M
need not be closed under taking contractions.

The following results are essentially consequences of [19, Lemma 2.3].
We omit their proofs because they are so similar to the proofs of Lem-
mas 3.2 and 3.1.

Lemma 3.4. If M is a class of GF (q)-representable matroids closed

under taking induced restrictions, then |M is closed under taking in-
duced restrictions.

Theorem 3.5. If M is a class of GF (q)-representable matroids closed

under taking induced minors, then M̃ is closed under taking induced
minors.

Recall that we are writing Pr as an abbreviation of PG(r−1, q). For
a subset G of E(Pr), let R = E(Pr)−G. We view the elements of G and
R as being colored green and red, respectively. We call Pr|G a projective
target if there is a sequence (F0, F1, . . . , Fr) of projective flats, that is,
flats of Pr, with F0 ⊆ F1 ⊆ · · · ⊆ Fr−1 ⊆ Fr and r(Fj) = j for all j such
that, for all i in [r], the set Fi−Fi−1 is contained in either G or R. Such
matroids were studied by Nelson and Nomoto [9] in the binary case and
by Mizell and Oxley [7] for GF (q)-representable matroids when q ≥ 2.
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Although GF (q)-representable matroids need not be uniquely GF (q)-
representable, it was shown by Mizell and Oxley [7, Proposition 6] that
if one GF (q)-representation of a simple GF (q)-representable matroid is
a target, then all of the GF (q)-representations of M are targets. Let M
be the projective target associated with the sequence (F0, F1, . . . , Fr)
of projective flats. Then, for any basis {x1, x2, . . . , xr} for Pr such that
{x1, x2, . . . , xi} spans Fi for each i, all the elements of Fi+1 − Fi have
the same color as xi+1.

Given a simple GF (q)-representable matroid M of rank at most r,
it is convenient to view M as a restriction of Pr. For this, we will take
(G,R) to be a partition of Pr such that Pr|G ∼= M . We can obtain a
tipped or tipless coning of M from this 2-coloring (G,R) of Pr by first
viewing this Pr as a hyperplane H of Pr+1 and then taking a point p
of E(Pr+1)−H. Next, for each point z of H, we color each point z′ of
E(Pr+1)− (H∪p) that is on the line between p and z so that the colors
of z and z′ agree. Finally. for a tipped coning, we color p green, and,
for a tipless coning, we color p red. It was noted in [13] that, in general,
two q-conings of a matroid need not be isomorphic. Nevertheless, we
have the following result.

Theorem 3.6. The class of GF (q)-projective targets is exactly the
class of matroids that can be obtained from the empty matroid by a
sequence of q-conings and tipless q-conings.

Proof. Suppose M is a projective target of rank at most r. As pro-
jective targets are uniquely GF (q)-representable, we lose no generality
in considering a 2-coloring (G,R) of E(Pr) such that Pr|G ∼= E(M).
Let {x1, x2, . . . , xr} be a basis of Pr such that {x1, x2, . . . , xi} spans a
projective flat Xi, and the color of xi+1 coincides with the color of each
of the points in Xi+1 −Xi for each i in [r − 1]. Every element z of M
can be uniquely written as a linear combination of x1, x2, . . . , xr, and
the color of z matches that of xj where j is the highest index of a basis
vector used in this linear combination. For each i in [r], let yi = xr−i+1.
If y1 is green, then Pr|{y1} corresponds to a tipped coning of the empty
matroid. If y1 is red, then Pr|{y1} corresponds to a tipless coning of the
empty matroid. For each i ≥ 2, the color of each point y of the flat Yi

that is spanned by {y1, y2, . . . , yi} coincides with the color of yj where
j is the lowest index of a member of {y1, y2, . . . , yi} that is used in the
linear combination yielding y. Thus, inductively, we see that each flat
Yi may be built by starting with a 2-coloring of the projective flat Yi−1

and adding yi as a coloop and then adding all of the projective points
between yi and the points of Yi−1 such that each added point has the
same color as its corresponding point in Yi−1. We conclude that each
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projective target of rank at most r can be obtained from the empty
matroid by a sequence or r operations each of which is a tipped or a
tipless coning.

On the other hand, suppose we have a matroid that can be obtained
from the empty matroid by a sequence of r operations, each a tipped
or tipless coning. Let the tips, in order, be y1, y2, . . . , yr, where these
are colored green or red if the coning is tipped or tipless, respectively.
For each i in [r], let xi = yr−i+1. Now let Xi be the projective flat
that is spanned by {x1, x2, . . . , xi}. Then X1, which equals {yr}, is a
tipped or tipless coning of the empty matroid depending on whether
yr is green or red. Moreover, it is not difficult to check that, for all i
in [r], the color of each element of Xi −Xi−1 coincides with the color
of xi. We conclude that Pr|G is a GF (q) projective target. □

The empty projective target can be associated with the 0-1 string
whose sole entry is 0.

Corollary 3.7. A non-empty projective target can be uniquely repre-
sented, up to isomorphism, by a 0-1 string whose leftmost entry is a
1.

Proof. By Theorem 3.6, non-empty projective targets are exactly the
matroids that can be obtained by starting with the empty matroid and
repeatedly coning with or without a tip so that at least one coning has
a tip. To construct the matroid corresponding to a particular 0-1 string
that begins with a 1, we read the string from left to right interpreting
each 1 as a tipped coning and each 0 as a tipless coning. □

The next result seems unlikely to be new, but we include it for com-
pleteness.

Corollary 3.8. For each non-negative integer n, there is, up to iso-
morphism, a unique binary projective target on n elements.

Proof. As noted above, when n = 0, we associate the string 0 with the
empty matroid. Now suppose n ≥ 1. Then n has a binary expansion
as a 0-1 string whose leftmost entry is a 1. By Corollary 3.7, there is
a unique non-empty binary projective target with this 0-1 string. If
n = 1, then the 0-1 string is 1, which corresponds to a tipped coning of
the empty matroid, so the resulting matroid has exactly one element.
Suppose the result holds for 0-1 strings of length less than k that have
1 as their leftmost entry. Take a 0-1 string S of length k having 1
as its leftmost entry. Let N be the unique binary projective target
corresponding to the 0-1 string S ′ obtained by deleting the rightmost
entry of S. Then, by coning N , we get a matroid having 2|E(N)|
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elements if the coning is tipless, or having 2|E(N)|+ 1 elements if the
coning is tipped. These two possibilities correspond to the two choices
for S, which are obtained from S ′ by adjoining a 0 or a 1, respectively,
as the rightmost entry. □

4. Avoiding M(K4) as an induced minor

In this section, we show that the class EXIM(M(K4)) is closed under
taking generalized parallel connections across projective geometries,
coning with a tip, and, for triangle-free matroids, coning without a tip.
Unless otherwise stated, all matroids in this section are assumed to be
binary. Let N be the class of binary matroids with that do not contain
M(K4) as an induced minor.

Lemma 4.1. The class N is closed under taking generalized parallel
connections of members of N across projective geometries.

Proof. Let M be a smallest-rank non-member of N such that there
are matroids M1 and M2 in N and a projective geometry N with
M = PN(M1,M2). Suppose, for some element e of E(M), the ma-
troid M/e has M(K4) as an induced minor. Then, by symmetry, we
may assume that e ∈ E(M1) − E(N) or e ∈ E(N). In the first case,
M/e = PN((M1/e),M2), so M/e is a generalized parallel connection
of two matroids in N across a projective geometry. Because M/e has
smaller rank than M , we conclude that M/e does not have M(K4) as
an induced minor, a contradiction. Now suppose that e ∈ E(N). Then
M/e = PN/e((M1/e), (M2/e)). Since N/e is a projective geometry and
both M1/e and M2/e are in N , we deduce that M/e ∈ N , a contra-
diction. Hence M/e ∈ N for all e in E(M). As M ̸∈ N , we see that
M must have a proper flat F such that M |F is isomorphic to M(K4).
Now F ∩ E(M1) is a flat of M1 and F ∩ E(M2) is a flat of M2. With-
out loss of generality, we may assume that E(M1) contains a basis of
M |F . Hence, F is contained in E(M1). Therefore, M1 has M(K4) as
an induced minor, a contradiction as M1 ∈ N . □

The next two results identify some structure of matroids that have a
coning point, that is, a point f such that f is in a triangle with every
other element of the matroid.

Lemma 4.2. If N has an element x in a triangle with every element
and N has a flat F such that N |F is isomorphic to M(K4), then
N |clN(F ∪{x}) is isomorphic to a rank-4 projective geometry with two
points deleted.
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Proof. The element x cannot be in F since every element of F is con-
tained in a rank-2 flat of size 2 but every rank-2 flat of N that contains
x is a triangle. Thus, r(clN(F ∪ {x})) = 4 and the result follows since
every element of F is in a triangle with x. □

Lemma 4.3. Let M be a rank-r matroid in N and suppose that, for
some x in E(M), the matroid N is obtained by adding every element
on the line clPr({x, y}) for each y in E(M)− x. Then N is in N .

Proof. Suppose that, for some subset X of E(N), the matroid N/X
has a flat F such that (N/X)|F ∼= M(K4). Since M/x does not have
M(K4) as an induced minor, and N/x ∼= M/x, we may assume x ∈
E(N/X). Then, by Lemma 4.2, N/X has a flat F ′ containing x such
that (N/X)|F ′ is isomorphic to a rank-4 projective geometry with two
points deleted. Then, by contracting x, we obtainM(K4) as an induced
minor of M , a contradiction. □

Recall that, when N is a simple binary matroid, A(N) is the coning
of N with tip p, and A(N)\p is the tipless coning of N .

Lemma 4.4. If N is in N , then A(N) is in N .

Proof. Let N be a smallest-rank member of N such that A(N) is not in
N . Suppose, for some e in E(A(N)), the matroid A(N)/e has M(K4)
as an induced minor. As A(N)/p ∼= N , we see that e ̸= p. Then, by
[19, Lemma 2.3 (i)], e is in a hyperplane H of M such that M |H ∼= N .
Hence we may assume that e ∈ E(N). Then A(N)/e ∼= A(N/e).
By the choice of N , the latter is in N . Hence so is the former, a
contradiction.

We conclude that A(N) contains a flat F such that A(N)|F ∼=
M(K4). As A(N) has an element, namely p, that is in a triangle
with every other element of E(A(N)), it follows, by Lemma 4.2, that
A(N) has a rank-4 flat F ′ containing p that is isomorphic to a rank-4
projective geometry with two points deleted. Hence (A(N)|F ′)/p is
isomorphic to M(K4). Since p was contracted to produce this induced
minor, we conclude that (A(N)|F ′)/p is isomorphic to an induced mi-
nor of N , a contradiction. □

Lemma 4.5. If N is a triangle-free member of N , then A(N)\p ∈ N .

Proof. Suppose N is a smallest-rank triangle-free member of N such
that A(N)\p is not in N . By [19, Lemma 2.3 (i)], each element e
of E(A(N)) is contained in a hyperplane H isomorphic to N . Hence
(A(N)\p)/e is isomorphic to A(N/e), and, by Lemma 4.4, A(N/e)
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is in N . We deduce that A(N)\p has M(K4) as an induced restric-
tion. However, as N has no triangles, A(N)\p has no triangles. Hence
A(N)\p does not have M(K4) as an induced restriction. □

On combining Lemmas 4.1, 4.4, and 4.5, we immediately obtain the
following result.

Corollary 4.6. The class N of matroids that do not have M(K4) as
an induced minor is closed under the following operations.

(i) Generalized parallel connections across projective geometries;
(ii) tipped coning; and
(iii) tipless coning of triangle-free matroids.

The next lemma [11, Corollary 3.7] will be used in the proofs of the
two subsequent lemmas.

Lemma 4.7. Let M be a 3-connected binary matroid having rank and
corank at least three and suppose that {x, y, z} ⊆ E(M). Then M has
a minor isomorphic to M(K4) whose ground set contains {x, y, z}.

Lemma 4.8. No 3-connected member of N has a triad.

Proof. Let T ∗ be a triad of a member M of N . Then, by Lemma 4.7,
T ∗ is in an M(K4)-minor of M . As (T ∗, E(M)−T ∗) is a 3-separation of
M , such a minor is obtained by contracting elements from E(M)−T ∗,
so this M(K4)-minor is an induced minor of M , a contradiction. □

Recall that, for a rank-r binary matroid M that is viewed as a re-
striction of Pr, if X ⊆ E(Pr)−E(M), we denote by M+X the matroid
Pr|(E(M) ∪X).

Lemma 4.9. Let (X, Y ) be a vertical 3-separation in a 3-connected
matroid M . Let GP = clPr(X) ∩ clPr(Y ) and GM = clM(X) ∩ clM(Y ).
If |GM | ≥ 1, then M has both (M |clM(X))+GP and (M |clM(Y ))+GP

as induced minors.

Proof. Let GP = {a, b, c}. Then GM ⊆ GP and we may assume that
a ∈ GM . Let MX = (M |clM(X)) + GP and MY = (M |clM(Y )) + GP .
Then it is well known and straightforward to check that each of MX

and MY are 3-connected. Thus, by Lemma 4.7, {a, b, c} is contained
in an M(K4)-minor of MX . Hence, MX has an induced minor N that
contains {a, b, c} and is isomorphic to M(K4) or F7. Then N has an
element x such that N/x has {a, b, c} as a triangle and has elements in
parallel with each of b and c. It follows that MY is an induced minor
of M , and the lemma follows by symmetry. □
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For r ≥ 3, a binary r-spike with tip t is the vector matroid Mr of
the binary matrix [Ir|Jr − Ir|1] where Jr and 1 are the r× r and r× 1
matrices of all ones, respectively, and 1 is labeled by t. Note that Mr/t
is obtained from an r-element circuit by replacing every element by two
elements in parallel. It is not difficult to check that all matroids of the
form Mr\z, where z ∈ E(Mr) − {t}, are isomorphic. We call Mr\z a
binary r-spike with tip t and cotip t∗, where {t, z, t∗} is a triangle of Mr.
Clearly M3\z ∼= M(K4). Also, one can show that Mr\z is self-dual for
all r.

For the rest of the paper, when we write M/e, we mean the matroid
obtained from M by contracting the element e but without simplifying
the result. The simplification of M/e is denoted by si(M/e).

Lemma 4.10. Let M be a simple matroid having an element e such
that M/e has a basis B each element of which is in a 2-circuit. If
M/e has at least one element that is not in a 2-circuit, then M has an
induced minor isomorphic to a spike with a tip and cotip.

Proof. Let f be an element of M/e that is not in a 2-circuit. Then, in
M/e, the fundamental circuit of f with respect to B has every element
except f in a 2-circuit. Let C be a smallest circuit of M/e for which,
with exactly one exception, every element is in a 2-circuit. Let g be
the exceptional element of C. Then the minimality of C implies that
M |clM(C ∪ {e}) is a spike with tip e and cotip g. □

Corollary 4.11. Let M be a rank-r matroid with r ≥ 3. If M has
an element e such that M/e has a basis, each element of which is in a
2-circuit, and M/e has at least one element that is not in a 2-circuit,
then M has M(K4) as an induced minor.

The rest of this section is devoted to proving that, when a 3-connected
matroid M has an element e such that neither M nor M\e has M(K4)
as an induced minor, M is a coning with tip e of a triangle-free matroid.

Proof of Theorem 1.7. We argue by induction of r(M). The result is
vacuously true when r(M) = 3. Assume the result holds for r(M) ≤ r−
1 and let M be a matroid satisfying the hypothesis and having r(M) =
r. We may assume there is an element f such that clM({e, f}) = {e, f}.
Let t denote the point of Pr − E(M) on the line spanned by {e, f}.

4.12.1. si(M/f) is 3-connected.

Suppose si(M/f) is not 3-connected. Then M has a vertical 3-
separation (X, Y ) with f ∈ cl(X)∩ cl(Y ). Let GP = clPr(X)∩ clPr(Y ).
Suppose first that e ̸∈ GP . Then, without loss of generality, e ∈ X.
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By Lemma 4.9, M has (M |clM(X)) + GP as an induced minor. By
the choice of M , every element of (M |clM(X)) + GP is in a triangle
with e. In particular, every element of the triangle GP is in a triangle
with e. Therefore, M\e has M(K4) as an induced minor, a contradic-
tion. Hence, we may assume that e ∈ GP . Let M1 = M |cl(X) and
M2 = M |cl(Y ). By Lemma 4.9, M1 + t is an induced minor M ′

1 of M .
Since M ′

1 is 3-connected and neither M ′
1 nor M ′

1\t has M(K4) as an
induced minor, the choice of M implies that every element of M1 lies
in a triangle of M1 + t with t. By symmetry, every element of M2 lies
in a triangle of M2 + t with t.
We show next that every element of E(M2)− {e, f} is in a triangle

of M2 with e. Assume that an element y of E(M2) − {e, f} is not in
such a triangle. Then M/y is M ′

1 with no element parallel to e, and
M ′

1 is a proper induced minor of M . We deduce that neither M ′
1 nor

M ′
1\e has M(K4) as an induced minor. Hence every element of M1 + t

is in a triangle with e. Let a be an element of E(M1) − {e, f}. Then
M1 has elements b and c such that {a, b, e} and {a, c, t} are triangles of
M1+ t. Thus, there is an additional element d of M1 that is on the line
cl({c, e}). Hence clM({e, f, a}) is a rank-3 flat containing six points, a
contradiction. We conclude that every element of E(M2)−{e, f} is in
a triangle with e. Thus, M2/e has a basis, each element of which is in
a 2-circuit, and f is not in a 2-circuit of M2/e. By Corollary 4.11, M2

has M(K4) as an induced minor. Hence 4.12.1 holds.
Let Mf = si(M/f). Then, by 4.12.1, Mf is a 3-connected induced

minor ofM , and neitherMf norMf\e hasM(K4) as an induced minor.
By the choice of M , every element of Mf is in a triangle with e. For a
triangle {x, y, e} of Mf , either {x, y, e} or {x, y, e, f} is a circuit of M .
From this, we deduce the following.

4.12.2. Every element of M is in a triangle of M + t with at least one
of e and t.

Next we prove the following assertion.

4.12.3. In M + t, among the triangles other than {e, f, t}, no triangle
containing e meets a triangle containing t.

To see this, first suppose there are elements a, b, and c in E(M) such
that {a, b, e} and {a, c, t} are distinct triangles in M + t. Then, as M
has no M(K4) induced minor, there an element s of Pr −E(M + t) in
the rank-3 projective flat F ′ spanned by {e, f, a}.
Assume there is a triangle {x, y, t} in M + t that is not contained

in F ′. As neither si(M/x) nor si(M/y) has M(K4) as a flat, M has
elements z and w such that {x,w, s} and {y, z, s} are triangles ofM+s.
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The projective flat F spanned by {e, f, a, b, c, x, y, z, w} has rank 4. Its
restriction to the nine listed points is isomorphic to the unique single-
element extension of AG(3, 2).

We show next that E(M)∩F = {a, b, c, e, f, w, x, y, z}. Assume this
fails. Then, as neither s nor t is in E(M), the matroid M |(F ∩E(M))
must be isomorphic to the complement in P4 of one of U2,2, U2,3, U3,3,
M(C4), U1,1 ⊕ U2,3, or the single-element deletion of M(K4). In each
case except when the complement isM(C4), the matroidM |(F∩E(M))
has a flat isomorphic to M(K4), a contradiction. In the exceptional
case, (M\e)|(F ∩ E(M\e)) is isomorphic to the complement in P4 of
M(C4) ⊕ U1,1 or of the single-element deletion of M(K4). In these
two cases, (M\e)|(F ∩ E(M\e)) has a flat isomorphic to M(K4), a
contradiction. We conclude that E(M) ∩ F = {a, b, c, e, f, w, x, y, z}.

Let M ′ = M |{a, b, c, e, f, w, x, y, z}. Then M ′/x is an induced minor
of M . This matroid is obtained from a copy of F7 with ground set
{a, b, c, e, f, w, x, y} by adding z in parallel to b. In particular, in M ′/x,
the element e is in a parallel class of size one, so si(M ′/x\e) is an
induced minor of M\e that is isomorphic to M(K4), a contradiction.
We deduce that every triangle of M + t containing t is contained in F ′.

We now know that every element of E(M)−{c, f} is in a triangle of
M containing e. As M is 3-connected, it has {c, f} as a coindependent
set. Hence M/e has a basis that avoids {c, f}. Therefore, M/e has a
basis each element of which is in a 2-circuit. As c is an element of M/e
that is not in a 2-circuit, Corollary 4.11 implies that M has M(K4) as
an induced minor, a contradiction. We conclude that 4.12.3 holds.

4.12.4. M has no triangle containing f .

Assume that M has such a triangle T . Then one easily checks using
4.12.2 that, in M + t, the flat spanned by T ∪ {e} contains distinct
intersecting triangles other than {e, f, t}, one containing e and one
containing t, a contradiction to 4.12.3.

Let {g, h, t} be a triangle of M + t different from {e, f, t}. Then,
by 4.12.3 and 4.12.4, both clM({e, g}) and clM({f, g}) contain exactly
two elements. Let u and s be the points in Pr − E(M) on the lines
clPr({e, g}) and clPr({f, g}), respectively. Then, by replacing {e, f, t}
by {e, g, u} and by {e, h, s}, we deduce from 4.12.2 and 4.12.3 that, in
M +u, every element of E(M)−g is in a triangle with exactly one of e
and u; and, in M + s, every element of E(M)− h is in a triangle with
exactly one of e and s.

4.12.5. M + t has at most one triangle other than {e, f, t} containing
t.
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Suppose that {x, y, t} is a triangle of M + t that differs from both
{e, f, t} and {g, h, t}. By 4.12.3, for the triangles {e, x, i} and {e, y, j}
of Pr, neither i nor j is in E(M). Thus,M+u has triangles {u, x, z} and
{u, y, w} for some z and w in E(M). Now M |{e, f, g, h, x, y, w, z} ∼=
AG(3, 2). Let F = clM({e, f, g, h, x, y, w, z}. Then clPr(F ) − F con-
tains {i, j, s, t, u} and Pr|{i, j, s, t, u} is a single-element deletion of
M(K4). It follows that M |F is one of AG(3, 2), the unique rank-4
single-element extension of AG(3, 2), or the unique rank-4 2-element
extension of AG(3, 2). In the last case, one can easily check that, for
some p in {s, t, u}, the matroid M + p has a triangle containing e that
meets a triangle containing p and does not contain {e, p}, a contradic-
tion to 4.12.3. In the second case, M |F is a rank-4 binary spike with
a tip and this tip is not equal to e. In that and the first case taking a
to be an element of F that differs from e and from the spike tip when
it is present, we have that si((M |F )/a\e) ∼= M(K4), a contradiction.
Hence 4.12.5 holds.

We now know that either every element of M except f is in a tri-
angle with e, or M has exactly three elements f , g, and h that are
not in triangles with e. In the first case, M/e certainly has a ba-
sis each element of which is in a 2-circuit. As {e, f} is a flat of M ,
by Corollary 4.11, M has an induced minor isomorphic to M(K4), a
contradiction. We deduce that f , g, and h are the only elements of
E(M)− e that are not in a triangle with e. By Lemma 4.8, M has no
triads. Hence r(M) = r(M\{f, g, h}). Thus, M/e has a basis avoiding
{f, g, h}. Each element of this basis is in a 2-circuit of M/e. Also, f is
in a parallel class of size one in M/e. Thus, by Corollary 4.11, M has
M(K4) as an induced minor, a contradiction. □
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